Check out Glinski's Hexagonal Chess, our featured variant for May, 2024.

This page is written by the game's inventor, Bn Em.

Spherical Corner Chess

Introduction

There's been some recent interest in variants on a spherical board, with a reworking of the page on Spherical Chess, as well as an allusion to it in the notes for Folding Magnetic Chess.

However, as noted in the latter, as well as in the comments on the former, the boards on which the ‘spherical’ variants are played are not truly (topological) spheres: the simplest, Leo Nadvorney's, has cross‐caps at the poles, making it topologically a Klein Bottle, while the others do more elaborate things with the diagonal and oblique moves. Some other ‘spherical’ variants have been devised, but as the Spherical Chess page notes these do not allow crossing the poles and as such are merely cylindrical/‘circular’.

Which leaves the question: can a square board be folded in such a way as to give a spherical board? As it turns out, yes: the sphere does, in fact, have a fundamental polygon which is square in shape: a sphere can be formed by joining the pairs of adjacent edges of a square, and in case geometry rather than just topology is in question, warping the surface appropriately.

However, applying this transformation to the usual face‐to‐face variants runs into an issue: each army is threatened from behind by a few of the opponent's pieces — in the case of the Western Orthodox array, (formerly) diagonally opposite rooks and knights, a bishop and rook's pawn, as well as both queens, begin under mutual threat, making the initial position tactically non‐quiet. On the other hand, corner arrays, while significantly less common, do not have this issue, and indeed seem to work quite nicely on such a board. As such, such arrays are presented below to showcase the corner‐pole spherical board.

It may be noted that, similarly to Ralph Betza's Three Kinds of Billiards Chess, there are two places we can put the join: the obvious way is to have it line up with the edges of squares, making, for example, e1 orthogonally adjacent (on the usual 8×8 board, with the first and last rank joined to the h and a files respectively) to h4 and retaining a total of 64 squares. However, we can also have the join running through the middle of the edge squares! Doing this has some interesting effects: the first rank and h file (and the last rank and a file), rather than being merely adjacent, become (each) one file! Meanwhile, a8 and h1 become the poles of the sphere rather than merely sitting next to them (and themselves), and the number of spaces shrinks from 64 to 51. Arrays for both are included here.

Variant 1

Setup

/membergraphics/MSspherical-corner-chess/BatturCorner.png

The setup is modified from Charles Gilman's Batturanga, replacing the Chaturanga pieces in that variant with their modern counterparts and allowing it to be played with the usual equipment (minus a pawn aside). While the bishops appear to be on the same colour, the topology of the board in fact unbinds bishops completely, and as such no contrivances such as Adjustment Rules or noncapturing orthogonal steps are necessary.

Rules

As in Western Orthodox chess, except as follows:

The board is a spherical one, formed by joining the first rank to the h file and the eighth rank to the a file, as indicated by the setup diagram. The following diagram, analogous to the one given for Nadvorney's ‘spherical’ variant, shows the regular Chess board in the middle, and around the edges, it shows the spaces that may be reached by orthogonal, diagonal, and Knight moves that move away from the edges for up to two spaces away.

b7 a7 b8 b7 b6 b5 b4 b3 b2 b1 h7 g7
b8 a8 a8 a7 a6 a5 a4 a3 a2 a1 h8 g8
a7 a8
a8 b8 c8 d8 e8 f8 g8 h8
a7 b7 c7 d7 e7 f7 g7 h7
a6 b6 c6 d6 e6 f6 g6 h6
a5 b5 c5 d5 e5 f5 g5 h5
a4 b4 c4 d4 e4 f4 g4 h4
a3 b3 c3 d3 e3 f3 g3 h3
a2 b2 c2 d2 e2 f2 g2 h2
a1 b1 c1 d1 e1 f1 g1 h1
a8b8
b7 b8 b1 b2
c7 c8 c1 c2
d7 d8 d1 d2
e7 e8 e1 e2
f7 f8 f1 f2
g7 g8 g1 g2
h7 h8 h1 h2
b1 a1 h8 h7 h6 h5 h4 h3 h2 h1 h1 g1
b2 a2 g8 g7 g6 g5 g4 g3 g2 g1 h2 g2

As in Gilman's Batturanga, “Forward” is defined as the orthogonal most directly away from the King's starting square. The Pawn on the Central Diagonal can make a noncapturing move in either direction, and capture on any diagonal except toward its own King square. If it actually captures toward the enemy King square it retains that flexibility, but once it moves off the long diagonal it behaves like the three starting that side of it.

Pawns may promote to any array piece upon reaching a space that shares an orthogonal with the opposing King's starting square, whence stepping forward would cross the join. As they start so close to promotion already, pawns lack an initial double step.

Castling, though perhaps of questionable utility, is as usual; the king moves two spaces.

Null moves are not permitted

Variant 2

Setup

/membergraphics/MSspherical-corner-chess/2lbackCornerSφ.png

The setup is adapted from Charles Gilman's Doubleback Corner Chess. Due to the changes in the board, a naïve translation eliminates two of Gilman's rooks, and one aside of queen, pawn, and bishop. While the former two, owing respectively to their strength and number, require no compensation (the rooks and queen are, indeed, returned to their orthodox numbers), having three(!) bishops and four knights is perhaps less then desirable. I have elected to replace one knight and one bishop aside with a pair of camels: like the bishops, these are colourbound (something this version does not alleviate) but begin next to each other and so on opposite colours; like the (still three, for lack of inspiration as to a single substitute) knights, they are poised to develop quicky (one can move immeiately if desired), but cannot immediately make any dangerous threats (only pawns, defended by knights, a rook, and a bishop are at any risk from them initially).

Rules

As in Western Orthodox chess, except as follows:

The board is spherical, formed by identifying the first rank with the i file and the ninth rank with the a file, with an equivalent join indicated by the setup diagram. The following diagram, as above, shows the regular Chess board in the middle, and around the edges, it shows the spaces that may be reached by orthogonal, diagonal, and Knight moves that move away from the edges for up to two spaces away.

c7 b7 c9 c8 c7 c6 c5 c4 c3 c2 i7 h7 g7
c8 b8 b9 b8 b7 b6 b5 b4 b3 b2 i8 h8 g8
c9 b9
a9 b9 c9 d9 e9 f9 g9 h9i9
b9 b8 c8 d8 e8 f8 g8 h8i8
c9 b7 c7 d7 e7 f7 g7 h7i7
d9 b6 c6 d6 e6 f6 g6 h6i6
e9 b5 c5 d5 e5 f5 g5 h5i5
f9 b4 c4 d4 e4 f4 g4 h4i4
g9 b3 c3 d3 e3 f3 g3 h3i3
h9 b2 c2 d2 e2 f2 g2 h2i2
i9 i8 i7 i6 i5 i4 i3 i2i1
h9g9
b7 b8 b2 b3
c7 c8 c2 c3
d7 d8 d2 d3
e7 e8 e2 e3
f7 f8 f2 f3
g7 g8 g2 g3
h7 h8 h2 h3
i7 i8 i2 i3
c2 b2 h9 h8 h7 h6 h5 h4 h3 h2 i2 h2 g2
c3 b3 g9 g8 g7 g6 g5 g4 g3 g2 i3 h3 g3

As in Gilman's corner variants, pawns may make either orthogonal move away from the king's starting square, or capture in the most directly‐away diagonal direction; the pawns beginning orthogonally aligned with the king may make any of the three moves or two captures acailable to it until it leaves that orthogonal with a capture. Alternatively the familiar ratio of capturing to non‐capturing moves may be restored by substituting berolina pawns.

Pawns behind the front Pawn diagonal have an optional initial double noncapturing move, on either orthogonal. In subvariants using Yeomen, they have it on the diagonal toward the enemy camp.

Pawns may promote to any array piece upon reaching a space orthogonally aligned with the opposing King's starting square, whence stepping forward is only possible in one direction.

Castling, though perhaps of questionable utility, is as usual; either rook may be castled with, the king moving two spaces in either case.

Null moves are not permitted


Notes

The joins of the second variant in particular can be a bit unintuitive — it's worth spending some time with it. The first is, of course, not entirely trivial either; in particular the poles being thrice adjacent to themselves can be a little jarring.

Both orthogonal and diagonal moves trace out some unusual‐looking paths; the diagonals in particular look a bit like partially time‐reversed Billiards Chess moves, while the criss‐crossing rook moves remind me somewhat of Crazy 38's' loops. Contrary to what one might expect, a diagonal move along the equator doubles back on itself at the join. This is a consequence of the unusual layout of the squares on the spherical surface (laying out the board on an actual geometrical sphere is left as an exercise to the reader), but a subvariant allowing unidirectional equatorial movement may well be worth trying too, at least in the first variant where this is relatively unproblematic given the geometry of the squares themselves.

‘True’ claims to topological sphericity aside, this has an interesting set of tradeoffs compared to the variants with cross‐caps: the latter is only viable for adapting games with even numbers of files (of course the ‘true’ Klein bottle form can in principle be formed from any rectangular board — but not necessarily in a way amenable to chess), while the present board only works without contrivance (some squares with a board edge after all, etc.) for square boards, though of any side length.

There is a third possibile way of placing the joins, besides the two mentioned above: place one join on the edges of squares and the other through the middle. This in effect adapts a board with non‐integer side length (such as square boards of side eight‐and‐a‐half(!)); doing so is at the expense, however, of equatorial symmetry, and as such designing a variant suitable for such a board is likely a non‐trivial affair however, whether with different‐armies corner arrays or equal armies facing across each other's paths.

Whilst, as stated above, most face‐to‐face setups do not suit this kind of board, Shogi's may be an exception: the flying chariot is hemmed in by pawns, the angle mover, and (twice!) by its own back rank, pawns cannot capture sideways at all, none of the back‐rank pieces ake any long‐range threats, and the left‐hand silver general, whilst it can enter the enemy camp and thereby (presumably) promote, cannot capture anything and would immediately be taken by either a pawn or an incense chariot; in the former case the gold general could retaliate, but the incense chariot is poised to avenge and even if the king takes that, I suspect the defending player has the advantage. Needless to say, further analysis would be necessary to see if spherical shogi is truly viable, but at least it needn't be dismissed out of hand.



This 'user submitted' page is a collaboration between the posting user and the Chess Variant Pages. Registered contributors to the Chess Variant Pages have the ability to post their own works, subject to review and editing by the Chess Variant Pages Editorial Staff.


By Bn Em.

Last revised by Bn Em.


Web page created: 2021-10-01. Web page last updated: 2021-10-20

Revisions of MSspherical-corner-chess